The Control of Crack Arrays in Thin Films

نویسندگان

  • Jiexi Huang
  • Byoung Choul Kim
  • Shuichi Takayama
  • M. D. Thouless
چکیده

Thin-film fracture can be used as a nano-fabrication technique but, generally, it is a stochastic process that results in non-uniform patterns. Crack spacings depend on the interaction between intrinsic flaw populations and the fracture mechanics of crack channeling. Geometrical features can be used to trigger cracks at specific locations to generate controlled crack patterns. However, while this basic idea is intuitive, it is not so obvious how to realize the concept in practice, nor what the limitations are. The control of crack arrays depends on the nature of the intrinsic flaw population. If there is a relatively large density of long flaws, as commonly assumed in fracture-mechanics analyses, reliable crack patterns can be obtained fairly robustly using relatively blunt geometrical features to initiate cracks, provided the applied strain is carefully matched to the properties of the system and the desired crack spacing. This process is analyzed both for cracks confined to the thickness of a film and for cracks growing into a substrate. The latter analysis is complicated by the fact that increases in strain can either drive cracks deeper into the substrate or generate new cracks at shallower depths. If the intrinsic flaws are all very short, the geometrical features need to be very sharp to achieve the desired patterns. While careful control of the applied strain is not required, the strain needs to be relatively large compared to that which would be required to propagate a large flaw across the film. This results in an approach that is not robust against the introduction of accidental damage or a few large flaws.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

نانومیله‌های نانوبرگ‌دار شده دی‌اکسید تیتانیم دوفازی به‌منظور استفاده در کاربردهای فتوالکتروشیمیایی

Rutile-phase titanium dioxide nanorod arrays were prepared by the hydrothermal method. Then, anatase-phase nanoleaves were successfully synthesized on the nanorod arrays via mild aqueous chemistry. Nanorod arrays scanning electron microscopy revealed that the thin film is uniform and crack free and the average diameter and height of the nanorods are 90 nm and 2 µm, respectively. Furthermo...

متن کامل

Investigation of Physical Properties of e-Beam Evaporated CdTe Thin Films for Photovoltaic Application

CdTe thin films with 2.8 µm thickness were deposited by electron beam evaporation method. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and atomic force microscopy (AFM) were used to characterize the films. The results of AFM analysis revealed that the CdTe films have uniform surface. CdTe thin films were heat-treated by SnCl2 solution. Structural analysis using XRD s...

متن کامل

Guided fracture of films on soft substrates to create micro/nano-feature arrays with controlled periodicity

While the formation of cracks is often stochastic and considered undesirable, controlled fracture would enable rapid and low cost manufacture of micro/nanostructures. Here, we report a propagation-controlled technique to guide fracture of thin films supported on soft substrates to create crack arrays with highly controlled periodicity. Precision crack patterns are obtained by the use of strateg...

متن کامل

The Effect of pH on the Optical Band Gap of PbSe Thin Film with Usability in the Quantum Dot Solar Cell and Photocatalytic Activity

This study was an attempt to provide a simple solution processed synthesis route for Lead Selenide (PbSe) nanostructure thin films using the chemical bath deposition (CBD) method which is commercially available in inexpensive precursors. In the CBD method, the preparation parameters play a considerable role and determine the nature of the final product formed. Known as two main factors, the eff...

متن کامل

Fabrication and characterization of fluorine-doped thin oxide thin films and nanorod arrays via spray pyrolysis

This paper reports the synthesis and characterization of fluorine-doped tin oxide (FTO) thin films via intermittent spray pyrolysis utilizing a solution mixture of tin chloride pentahydrate and ammonia fluoride. Utilizing the same solution, nanorod arrays were fabricated via template-based growth. Uniform and crack-free FTO films over 20×20 mm with a thickness up to 900 nm have been routinely a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013